Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)The OSG-operated Open Science Pool is an HTCondor-based virtual cluster that aggregates resources from compute clusters provided by several organizations. Most of the resources are not owned by OSG, so demand-based dynamic provisioning is important for maximizing usage without incurring excessive waste. OSG has long relied on GlideinWMS for most of its resource provisioning needs but is limited to resources that provide a Grid-compliant Compute Entrypoint. To work around this limitation, the OSG Software Team has developed a glidein container that resource providers could use to directly contribute to the OSPool. The problem with that approach is that it is not demand-driven, relegating it to backfill scenarios only. To address this limitation, a demand-driven direct provisioner of Kubernetes resources has been developed and successfully used on the NRP. The setup still relies on the OSG-maintained backfill container image but automates the provisioning matchmaking and successive requests. That provisioner has also been extended to support Lancium, a green computing cloud provider with a Kubernetes-like proprietary interface. The provisioner logic has been intentionally kept very simple, making this extension a low-cost project. Both NRP and Lancium resources have been provisioned exclusively using this mechanism for many months.more » « less
-
Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)A general problem faced by opportunistic users computing on the grid is that delivering cycles is simpler than delivering data to those cycles. In this project XRootD caches are placed on the internet backbone to create a content delivery network. Scientific workflows in the domains of high energy physics, gravitational waves, and others profit from this delivery network to increases CPU efficiency while decreasing network bandwidth use.more » « less
-
Data distribution for opportunistic users is challenging as they neither own the computing resources they are using or any nearby storage. Users are motivated to use opportunistic computing to expand their data processing capacity, but they require storage and fast networking to distribute data to that processing. Since it requires significant management overhead, it is rare for resource providers to allow opportunistic access to storage. Additionally, in order to use opportunistic storage at several distributed sites, users assume the responsibility to maintain their data. In this paper we present StashCache, a distributed caching federation that enables opportunistic users to utilize nearby opportunistic storage. StashCache is comprised of four components: data origins, redirectors, caches, and clients. StashCache has been deployed in the Open Science Grid for several years and has been used by many projects. Caches are deployed in geographically distributed locations across the U.S. and Europe. We will present the architecture of StashCache, as well as utilization information of the infrastructure. We will also present performance analysis comparing distributed HTTP Proxies vs StashCache.more » « less
An official website of the United States government
